Question According to the Arrhenius equation,

- A. A high activation energy usually implies a fast reaction
- B. Rate constant increases with an increase in temperature. This is due to a greater number of collisions whose energy exceeds the activation energy.
- C. Higher the magnitude of activation energy, the stronger is the temperature dependence of the rate constant.
- D. The pre-exponential factor is a measure of the rate at which collisions occur, irrespective of their energy.

Solution: (B, C and D)

According to Arrhenius Equation

$$K = Ae^{-Ea/RT}$$

Therefore at $T \rightarrow 0$

$$e^{-Ea / RT} \rightarrow 0$$

Therefore rate constant decreases with temperature.

And as $T \rightarrow \infty K \rightarrow A$.

Thus, as temperature increases, the rate constant increases and approaches a value close to the Arrhenius constant.

Now

$$dK / dT = -EaA / RT e^{-Ea / RT}$$

Hence,

Higher the activation energy higher is the required temperature for reaction to occur, and hence greater is the temperature dependency of the rate constant.